69模板网 >工作计划

苏教版四年级数学教案7篇

不少教师在教案中未能充分利用技术手段辅助教学,一份完整的教案能够为教师提供清晰的教学思路,减少课堂上的混乱,以下是69模板网小编精心为您推荐的苏教版四年级数学教案7篇,供大家参考。

苏教版四年级数学教案7篇

苏教版四年级数学教案篇1

三位数除以两位数的估算

?教学内容】

义务课程标准实验教科书(西师版)四年级上册第101页例2,课堂活动以及练习十九第5~8题。

?教学目标】

1.掌握三位数除以两位数的估算方法,并能熟练进行相关估算。

2.在尝试练习中掌握两位数的估算方法。在解决实际问题中掌握具体的数量关系。

3.在解决问题中学会用数学眼光看待生活现象,并在探索算法的过程中获得成功的体验,提高对数学的认识。

?教具学具准备】

图片、视频展示台等。

?教学过程】

一、创设情景、回顾知识

1.口算:80÷490÷30800÷20 120÷4540÷903200÷802.

2.求下面各数的近似数。23866721(省略千位、百位后面的尾数)

3.估算:79÷459×42 183÷6310×194.

提问:除数是一位数的除法该怎样估算?

教师:今天我们继续探讨估算除法。

(板书:估算除法)

[点评:充分利用学生已有的估算经验,做好知识的孕伏工作;同时为分散本节课的知识难点做好铺垫工作。]

二、独立尝试、合作研究

1.出示例2图:从重庆出发,普通客船每时行20km,大约()时可以行207km。口头列式并解答,说一说你是怎样估算的?

要点:将207km看作200km,200÷20=10(时)

2.出示例2第一组信息。提出问题,连贯的说一说条件和问题。

从重庆到三峡大坝全长624km,如果乘坐普通客船每时行23km,去三峡大坝大约需要多少时?

(1)列式并说一说为什么用除法?要点:624里有几个23就要行几时(为小结数量关系“路程÷速度=时间”作好铺垫)。

(2)说一说你是怎样估算的?要点:可以把624看成600,把23看成20,再口算。也可以把624看成620,把23看成20,再口算。根据学生的回答进行梳理并板书。624÷23≈30(时) 624÷23≈31(时) 600÷20=30620÷20=31

3.独立尝试练习,例2第二组信息。

从三峡大坝到重庆全长624km,如果乘坐高速快船每时行52km,回重庆大约需要多少时?

(1)列式并估算。

(2)说一说你是怎样估算的?若有不会的同学,可以请教同桌、同组同学或老师。

(3)集体交流——分两个方面。

第一,为什么用除法?(624里有几个52就要行几时)

第二,你是怎样估算的?(把624看成600,把52看成50,再口算) 624÷52≈12(时) 600÷50=12

[点评:让学生在猜测中学会迁移能力,并在与同学的交流中达成对猜测能力的'认同感,在不断地观察和交流中,从具体逐步过渡到抽象。学生在经历知识形成的过程中逐步上升为估算知识的理性思考。]

三、小结提升、完成板书

小结:(1)除数是两位数的除法怎样估算?被除数看作整百数(或几百几十数),除数看作整十数,再相除。

(2)从解决上面的问题中你发现了怎样的数量关系?路程÷速度=时间。

四、练习巩固、熟练估算

1.第102页课堂活动。

(1)180÷90=2(时)为什么这样列式?路程÷速度=时间。

(2)581÷7=83(千米)又能发现怎样的数量关系?路程÷时间=速度。

(3)762÷75≈10(时)怎样估算的?

2.教科书第103页5~8题

苏教版四年级数学教案篇2

教学内容

一元二次方程概念及一元二次方程一般式及有关概念. 教学目标

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.

1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键

1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程

一、复习引入

学生活动:列方程. 问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

2

一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

2

例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

22

分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略

三、巩固练习

教材 练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x+2=5y-3 (2) x=4 (3) 3x-2

2

22

52 2 2

=0 (4) x-4=(x+2) (5) ax+bx+c=0 x

四、应用拓展

22

例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.

22

证明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不论m取何值,该方程都是一元二次方程.

2

? 练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布臵作业

第2课时 21.1 一元二次方程

教学内容

1.一元二次方程根的概念;

2.?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标

了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键

1.重点:判定一个数是否是方程的根;

2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.

教学过程

一、复习引入

学生活动:请同学独立完成下列问题.

2

问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0

列表:

问题2列表:

3

老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?

22

老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如

果抛开实际问题,问题2中还有x=-11的解.

一元二次方程的解也叫做一元二次方程的根.

2

回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.

2

例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.

分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.

2

解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.

2

例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式(a+b+c)的值

2 2

练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值

点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.

例3.你能用以前所学的知识求出下列方程的根吗?

222

(1)x-64=0 (2)3x-6=0 (3)x-3x=0

分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略

三、巩固练习

教材 思考题 练习1、2.

四、归纳小结(学生归纳,老师点评) 本节课应掌握:

(1)一元二次方程根的概念;

(2)要会判断一个数是否是一元二次方程的根;

(3)要会用一些方法求一元二次方程的根.(“夹逼”方法;平方根的意义) 六、布臵作业

苏教版四年级数学教案篇3

教学目标:

1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。

2.培养学生学习数学的兴趣。

3.使学生感受生活中处处有数学。

教学重难点:

认识算盘、计算器,计算器的使用。

教学关键:

能够自学了解算盘与计算器的使用方法。

教具准备:

算盘、计算器。

教学过程:

课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。

一、计算工具的历史

(一)课前参与反馈(学生介绍计算工具)

前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?

学生发言。

(二)老师根据学生介绍的情况补充介绍计算工具的发展历史

计算工具的源头可以上溯至2000多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。

计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。

从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。

最古老的计算工具:算筹

我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。

中国人发明算盘

随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。

一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。

算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。

算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。

利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。

由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的`传授及普及一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的珠算在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算近年来也取得了长足的发展。

即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算中心,有1,000多所学校接受珠算,算盘正成为美国的一种数学教学工具。

计算机

1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(eniac)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。

计算机发展史:

■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。

■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。

■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。

■19__年ibm360系统问世它成为使用集成电路的第三代电子计算机的代表。

■使用超大规模集成电路的第四代计算机。

■第五代电子计算机被称为智能计算机。

■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。

二、算盘和计算器的认识与使用

1.算盘。

刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?

(1)算盘各部分名称

算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。

常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。

在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)

拨出一个数,说一说这表示多少?

(2)两种不同的算盘:

出示两种不同的算盘(书23页图):

观察有什么不同。

左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。

后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。

原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。

(3)算盘的两种功能:计算和计数

2.计算器。

(1)计算器的使用非常的广泛,你认识计算器吗?

出示一个计算器,你能说说每个键的功能吗?

显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。

(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。

(3)计算器的使用与算盘相比有什么优势?

(4)全班看计算器,师生对口令。

三、总结

计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。

四、作业:

1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)

2.了解计算器的其他功能。

苏教版四年级数学教案篇4

教学目标:

1、使学生初步认识生活中得对称现象,认识轴对称图形和对称轴;知道轴对称图形得含义,能判断一个图形是否是轴对称图形。

2、会根据轴对称图形得特点,找出相应得对称轴。

3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。

4、培养学生得观察能力和动手操作能力。

教学重点:

掌握轴对称图形得特点,能判断一个图形是否是轴对称图形。

教学难点:

会找出轴对称图形得对称轴。

教学准备:

多媒体课件,剪纸

学具准备:

长方形纸一张、剪刀、

教学过程:

一.情景欣赏:

师:同学们,老师今天给大家带来了一些得图片,请大家欣赏,在欣赏得同时观察这些图片有什么特点。

1.屏幕出现图片

(1)自然景观图片

师:这景色美吗?

生:美

师:大自然得景色很美,而且还很有特点,聪明得设计师和能工巧匠利用大自然得特点设计和建造了一些美丽得建筑。

(2)轴对称建筑图片

师:你看到得图形有什么特点?

生:有,有得左右一样,有得上下一样。两边一样…

师:我们得生活中经常也可以看到具有这种特点得物体和图形。

(3)生活中得轴对称图片

师:剪纸是我国得民间艺术,历史悠久,流传广泛,它最能体现这种特点。

(4)剪纸图片

2、对图形进行概括:

师:你们所看到得这些图形都有什么特点?

生:有得左右一样,有得上下一样。两边一样,有一种对称美。

师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题:轴对称图形)轴对称这种特点在我们日常生活中,应用很广泛,到底什么样得图形是轴对称图形呢?这就是我们今天要研究得问题。

二.动手操作发现新知:

1、师:我们来做个实验,先看大屏幕老师怎么做

(演示课件。折纸------画图-----剪纸-----打开)

师:现在请大家拿出你手中得长方形纸和剪刀,向老师这样也剪出一个简单得图形。

2、学生操作(教师巡视指导)

师:通过剪纸,你发现了什么?

生:我发现了我这个图形得两边一样,中间还有一条折痕,

师:那你知道它是什么图形吗?

生:轴对称图形。

师:能用你得话说一说什么是轴对称图形?

3、揭示特征。

师:老师给大家再演示一下

演示课件,概括轴对称图形得概念。

如果一个图形沿着一条直线对折,两侧得图形能够完全重合,这个图形就是轴对称图形。折痕所在得这条直线叫做对称轴

4、举例:

师:你能说一说生活中你见过哪些轴对称图形?

生:举例,师点评

师:同学们对什么是轴对称图形理解得非常好,现在我们在来研究一下我们学过得一些图形,看他们是不是轴对称图形。

三.合作研讨探究(轴对称图形得探索与提高)(四人小组)

1.、把下面得图形剪下来折一折,看一看那些是轴对称图形?并画出他们得对称轴。

2,结论:课件演示

通过刚才剪一剪,折一折,画一画,你们又发现了什么?

师:通过合作研究,我们知道了这些图形中有得是轴对称图形,有得不是;有得轴对称图形只有一条对称轴,有得有两条,三条,四条,还有得有无数条对称轴。

四.巩固练习。

1、考考你得眼力

(1)下面得图形那些是轴对称图形?找出它们得对称轴。

师:不光这些几何图形是轴对称图形,我们学过得字母、数字、汉字有些也是轴对称图形。

(2)下面得字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?

acdeftghu

123456789

王上田大中日人朋两

2、.填一填

(1)、如果一个图形沿着()对折,两侧得图形能够()这个图形就是轴对称图形。折痕所在得这条直线叫做()。

(2)、圆是()图形,在同一圆里任何一条()都是圆得对称轴。

(3)、等边三角形有()条对称轴

3.判断

(1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。()

(2)平行四边形可分成两个完全一样得三角形,所以,平行四边形也有两条对称轴。()

(3)圆上任意两点间得线段都是圆得对称轴。()

(4)有两条对称轴得图形只有长方形。()

5.画出下面每组图形得对称轴.各能画几条?

五.课堂小结:

1.通过这节课得学习你有什么收获?

2、结束语:

师:对称是一种美,是数学美在生活中得具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们得合作,再见。

苏教版四年级数学教案篇5

教学内容

1. (a≥0)是一个非负数;

2.( )2=a(a≥0).

教学目标

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.

教学重难点关键

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时, 叫什么?当at;0时, 有意义吗?

老师点评(略).

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数.

做一做:根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我们可以直接利用( )2=a(a≥0)的结论解题.

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、巩固练习

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、应用拓展

例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0).

六、布置作业

1.教材p8 复习巩固2.(1)、(2) p9 7.

2.选用课时作业设计.

3.课后作业:《同步训练》

苏教版九年级上册数学教案

苏教版四年级数学教案篇6

教学目标:

1、通过练习,巩固三位数乘两位数乘法的算理及笔算方法。掌握因数中间、末尾有0的乘法的笔算的方法。

2、培养学生的计算能力、估算能力及运用所学知识解决简单问题的能力。

3、进一步渗透热爱祖国、热爱科学的。

教学重点:

1、正确笔算,提高一次计算的.正确率。

2、能够灵活地运用知识解决实际问题。

教学过程:

一、基本练习

1、口算。

15×6=140×3=29×2=

56×10=17×30=80×5=

140×6=240×2=5×24=

2、笔算下面各题。

629×53=408×75=1200×40=

注意:为防止丢进位数,在没有达到熟练之前可以标出进位数的方法,但必须在练习中逐渐锻炼用自己的脑子记住进位数。因数中间有0的乘法,在学习中更容易出错,应该引起我们注意,在订正时可以增加对比。

因数末尾有0的乘法,要问清学生,为什么可以把0甩出去进行简便运算。以1200×40为例,可以这样理解。

1200=12×10040=4×10

所以1200×40=12×4×100×10

这就是”因数末尾有0时,可以先把0前面的数相乘,再看两个因数的末尾一共有几个0,就在乘得数的末尾填写几个0“的道理。

二、综合练习。36页第1题。

30×616×712×3050×60

300×616×7012×300500×60

1、比一比谁算得快。

48×2372×124102×1556×456

603×3425×112460×1835×440

2、不计算,判断对错。

58×18=4534( )88×34=318( )

150×40=600( )350×70=2450( )

三、课堂作业设计

36页第4题、5题、6题。

苏教版四年级数学教案篇7

课题:1。1~1。4复习(初二上数学)b版

课型:复习

学习目标(学习重点):

1.了解轴对称与轴对称图形,会准确画出轴对称图形,找出对称轴、对称点等.

2.能熟练应用轴对称的性质.

3.复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用.

例题:

例1.(1)下列说法中,正确的个数是()

①轴对称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.

a.1个b.2个c.3个d.4个

(2)如图在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点()

a.p1b.p2c.p3d.p4

例2.作图题(1)作出图1中△abc关于直线l的对称图形;

(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等.

图1图2

例3.已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,

(1)求证:be=cf;

(2)若ab=15,ac=7,求ae的长.

课后续助:

1.点a和点b关于直线l对称,对直线l任意一点p,必有pa____pb

2.对称图形________有一条对称轴,________有两条对称轴,________有四条对称轴,_______有无数条对称轴。(各填上一个图形即可).

3.到三角形的三个顶点的距离相等的点是___________的交点.到三角形的三边的距离相等的点是___________的交点.

4.如果△abc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么

∠c/=____.

5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________.依据是_______________________________.

6.如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,

若ab=10,△abd的周长为23,求△abc的周长.

7.如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长.

8.如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc.

求证:bc=ab+ae.

9.如图,在四边形abcd中,bc>ba,ad=cd,

bd平分∠abc,试说明:∠a+∠c=180°.

会计实习心得体会最新模板相关文章:

人教版小学二年级数学下册教案7篇

小学数学一年级找规律教案7篇

三年级语文教案部编版上册教案7篇

三年级上册数学第三单元教案课后反思7篇

七年级教案参考7篇

7年级数学教学工作总结通用7篇

四年级劳动教案7篇

五年级科学上册教案7篇

七年级教案精选7篇

四年级数学教学反思优秀7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    72209

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。